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ABSTRACT

It is well known that a best rank-R approximation of order-3 tensors
may not exist for R ≥ 2. A best rank-(R, R, R) approximation always
exists, however, and is also a best rank-R approximation when it has
rank (at most) R. For R = 2 and real order-3 tensors it is shown
that a best rank-2 approximation is also a local minimum of the best
rank-(2,2,2) approximation problem. This implies that if all rank-(2,2,2)
minima have rank larger than 2, then a best rank-2 approximation
does not exist. This provides an easy-to-check criterion for existence
of a best rank-2 approximation. The result is illustrated by means of
simulations.
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1. Introduction

Order-N tensors are defined on the Cartesian product of N linear spaces. For fixed bases
of these linear spaces, the tensor is represented by an N-way array. Tensors are usually
identified by their array representation. In this paper we consider real order-3 tensors. The
rank of an order-3 tensor Y ∈ R

I×J×K is defined as

rank(Y) = min

{
R : Y =

R∑
r=1

(ar ◦ br ◦ cr)

}
, (1.1)

where ar ∈ R
I , br ∈ R

J , cr ∈ R
K , r = 1, . . . ,R, and ◦ denotes the outer vector product.

The outer vector product Y = a ◦ b ◦ c has entries yijk = ai bj ck and constitutes a rank-1
tensor when a, b and c are nonzero. The set of tensors with rank at most R is denoted by

SR(I , J ,K) = {Y ∈ R
I×J×K : rank(Y) ≤ R} . (1.2)

We consider the problem of finding a best rank-R approximation of Z ∈ R
I×J×K :

min
Y∈SR(I ,J ,K)

‖Z − Y‖2F , (1.3)
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where ‖ · ‖F denotes the Frobenius norm (i.e. the square root of the sum-of-squares). The
problem (1.3) is solved in the variables ar ∈ R

I , br ∈ R
J , cr ∈ R

K , r = 1, . . . ,R, and its
solution is known as a Canonical Polyadic Decomposition (CPD), or Candecomp [1], or
Parafac.[2] Itwas introduced in [3,4]. TheCPDand related decompositions havenumerous
applications [5–12], and various iterativeCPDalgorithms are available.[13]Unfortunately,
for R ≥ 2 the problem may not have an optimal solution because the set SR(I , J ,K) is not
closed.[14] In such a case, trying to compute a best rank-R approximation yields a rank-
R sequence converging to a boundary point X of SR(I , J ,K) with rank(X ) > R. This is
accompanied by rank-1 terms that become nearly linearly dependent, while their norms
become arbitrarily large.[14–16] This phenomenon is known as ‘diverging components’
or ‘degenerate solutions’ or ‘diverging rank-1 terms’.[17–20] To guarantee existence of
a best rank-R decomposition, one may impose constraints on the rank-1 terms such as
orthogonality or nonnegativity.[16,21,22] However, these constraints are not suitable for
all applications.

Results on nonexistence of a best rank-R approximation are the following. Any 2×2×2
tensor of rank 3 does not have a best rank-2 approximation.[14] Nonexistence of a best
rank-2 approximation ofZ ∈ R

I×J×K holds on a set of positive volume [14]. Nonexistence
of a best rank-R approximation holds on a set of positive volume or even almost everywhere
for certain classes of Z ∈ R

I×J×2 [23,24]. Note that a best rank-1 approximation always
exists, since S1(I , J ,K) is closed [14].

Instead of imposing constraints, one may consider the following problem instead:

min
Y∈SR(I ,J ,K)

‖Z − Y‖2F , (1.4)

where SR(I , J ,K) denotes the closure of SR(I , J ,K) in R
I×J×K . To solve problem (1.4), a

characterization of the boundary points of SR(I , J ,K) is needed, and an algorithm to find
an optimal boundary point. For SR(I , J , 2) and R ≤ min (I , J) this can be done via the
Generalized Schur Decomposition (GSD).[25,26] Results on the existence of best rank-
R approximations for generic Z ∈ R

I×J×2 can be found in [23,24]. For S2(I , J ,K) the
boundary points are described in [14] and an algorithm is developed in [27] by means of
finding a best rank-(2,2,2) approximation with several zero restrictions on the 2 × 2 × 2
core tensor. If the free (2,2,2)-entry of the core tensor equals zero for all such best rank-
(2,2,2) approximations, then the optimal boundary point of S2(I , J ,K) has rank 3 and no
best rank-2 approximation exists.

A different approach to find an optimal boundary point of SR(I , J ,K) is to determine
its decomposition form from the pattern of groups of diverging rank-1 terms in the CPD
sequence generated by the iterative CPD algorithm. The decomposition can then be fitted
to the tensor using initial values obtained from the diverging CPD sequence. This method
has been proposed and demonstrated in simulation studies in [28,29]. For an application
see [30].

In this paper, we prove a new criterion for existence of a best rank-2 approximation
for real order-3 tensors via (unconstrained) best rank-(2,2,2) approximations as recently
suggested in [31]. The 2 × 2 × 2 core tensor of a best rank-(2,2,2) approximation has
rank 2 or 3. When it has rank 2 the best rank-(2,2,2) approximation is also a best rank-2
approximation. We prove that a best rank-2 approximation is also a local minimum of
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the best rank-(2,2,2) approximation problem for generic tensors. Hence, if all best rank-
(2,2,2) minima have rank 3, then no best rank-2 approximation exists. Verifying the rank
of the 2 × 2 × 2 core array is numerically more reliable than checking whether a core
entry equals zero [27]. This will be demonstrated in a simulation study. A data analytic
perspective on the equivalence of a best rank-(2,2,2) approximation of rank 2 and a best
rank-2 approximation can be found in [32].

The paper is organized as follows. In Section 2, we consider the problem of finding a best
rank-(R1,R2,R3) approximation by iterating overGivens rotations to find the orthonormal
bases for the three subspaces. The first-order conditions of this problem are derived. In
Section 3, we parameterize the set S2(I , J ,K) by a variant of the GSD and derive first-order
conditions using Givens rotations as in Section 2. The first-order conditions are used to
prove our main result in Section 4. In Section 5, we compare our criterion for existence of
a best rank-2 approximation to that of [27] in a simulation study. In Section 6, we consider
the case of complex tensors and provide links between our results and existing results in
algebraic geometry. Finally, Section 7 contains a discussion of our findings.

We use the following notation. The notation Y , Y, y, y is used for a three-way array, a
matrix, a column vector and a scalar, respectively. All arrays, matrices, vectors and scalars
are real-valued unless indicated otherwise. Matrix transpose and inverse are denoted as
YT and Y−1, respectively. A zero matrix of size p × q is denoted by Op,q. A zero column
vector is denoted by 0. A p× pmatrix Y is called orthogonal if YTY = YYT = Ip. A p× q
matrix, p > q, is called columnwise orthogonal if YTY = Iq.

2. Finding a best rank-(R1,R2,R3) approximation

A mode-i vector or fibre of an order-3 tensor Y ∈ R
I×J×K is given by varying the ith

index while keeping the other two indices fixed. The mode-i rank, denoted by ranki(Y),
is defined as the rank of the collection of mode-i vectors. Hence, for generic Y ∈ R

I×J×K

we have rank1(Y) = min (I , JK), rank2(Y) = min (J , IK) and rank3(Y) = min (K , IJ).
The triplet (rank1(Y), rank2(Y), rank3(Y)) is referred to as themultilinear rank, which we
denote as mrank(Y). The set of tensors of multilinear rank at most (R1,R2,R3) is denoted
by

M(R1,R2,R3)(I , J ,K) = {Y ∈ R
I×J×K : mrank(Y) ≤ (R1,R2,R3)}, (2.1)

where we assume R1 ≤ I , R2 ≤ J and R3 ≤ K . We define the multilinear transformation
Y = (S,T,U) · G via yijk = ∑

pqr siptjqukrgpqr . Any Y ∈ M(R1,R2,R3)(I , J ,K) can be
written as Y = (S,T,U) · G, with S ∈ R

I×R1 , T ∈ R
J×R2 , and U ∈ R

K×R3 being
columnwise orthogonal, and G ∈ R

R1×R2×R3 . We consider the problem of finding a best
rank-(R1,R2,R3) approximation to a given tensor Z ∈ R

I×J×K :

min
Y∈M(R1,R2,R3)(I ,J ,K)

‖Z − Y‖2F , (2.2)

which is solved in the variables S, T, U and G. A solution to problem (2.2) is also known
as a Tucker3 decomposition,[33] with the higher order singular value decomposition [34]
being a Tucker3 solution in which the transformational ambiguities are (mostly) fixed.

Problem (2.2) is equivalent tomaximizing ‖(ST ,TT ,UT)·Z‖2F over (S,T,U) and setting
G = (ST ,TT ,UT) · Z ; see [35]. This in turn is equivalent to maximizing the Frobenius
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norm of any R1 × R2 × R3 subtensor of (̃ST , T̃T , ŨT) · Z over orthogonal S̃ ∈ R
I×I ,

T̃ ∈ R
J×J , and Ũ ∈ R

K×K , with G equal to the transformed subtensor, and (S,T,U) equal
to the corresponding columns of (̃S, T̃, Ũ). We work with this formulation of problem
(2.2), where we take the subtensor that has indices (i, j, k)with 1 ≤ i ≤ R1, 1 ≤ j ≤ R2 and
1 ≤ k ≤ R3. Since the set of orthogonal matrices is compact, problem (2.2) is guaranteed
to have an optimal solution.

Algorithms for solving problem (2.2) have been proposed in [31,35–38]. In the higher
order powermethod of [35] each iteration rotates mass to the target subtensor by using the
singular value decomposition (SVD) of the columns of one of the three matrix unfoldings
of the rotated tensor corresponding to the subtensor. First-order conditions are derived
in [39] and correspond to orthogonal sets of vectors in the three matrix unfoldings. Let

the slices of Z̃ = (̃ST , T̃T , ŨT) · Z be partitioned as
[
Gk Lk
Nk Mk

]
, where Gk ∈ R

R1×R2 ,

Lk ∈ R
R1×(J−R2), Nk ∈ R

(I−R1)×R2 , andMk ∈ R
(I−R1)×(J−R2), k = 1, . . . ,K . Hence, in an

optimal solution the core tensor G has slices Gk, k = 1, . . . ,R3. The first-order conditions
can be written as

[G1 · · · GR3] [N1 · · · NR3]T = O, (2.3)⎡⎢⎣ G1
...

GR3

⎤⎥⎦
T ⎡⎢⎣ L1

...

LR3

⎤⎥⎦ = O, (2.4)

[vec(G1) . . . vec(GR3)]T [vec(GR3+1) . . . vec(GK )] = O, (2.5)

where vec( · ) stacks the columns of a matrix below each other in a column vector.
For later use, we present an alternative derivation of the first-order conditions. We

consider updating each of (̃S, T̃, Ũ) by means of Givens rotations, an approach that has
been used for the Simultaneous Generalized Schur Decomposition (SGSD) in [40], and
for the GSD in [24]. The first-order conditions can be derived by requiring that rotating
two rows, columns or slices of (̃ST , T̃T , ŨT) · Z will not increase the Frobenius norm of its
R1 × R2 × R3 subtensor. We need the following result.
Lemma 2.1: For vectors x, y ∈ R

p and α ∈ R, define the rotation

[x̃ ỹ] = [x y]
[
cos (α) − sin (α)

sin (α) cos (α)

]
.

For f (α) = ‖x̃‖2 = x̃T x̃ we have ∂f /∂α = 2 x̃T ỹ.

Proof: We write f (α) = ∑p
i=1 ( cos (α) xi + sin (α) yi)2. The first derivative is obtained as

∂f
∂α

= 2
p∑

i=1

( cos (α) xi + sin (α) yi) ( − sin (α) xi + cos (α) yi) = 2
p∑

i=1

x̃i ỹi = 2 x̃T ỹ.
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Consider rotating rows i and j of each slice of Z̃ , with 1 ≤ i ≤ R1 and R1 + 1 ≤ j ≤ I . This
is done by premultiplying S̃T by a rotation matrix Q that is equal to II except

qii = qjj = cos (α) , qji = −qij = sin (α) . (2.6)

By Lemma 2.1, the rotation can increase the norm of the subtensor unless x̃ and ỹ are
orthogonal, where x̃ contains the ith rows of Gk, k = 1, . . . ,R3, stacked below each other
as column vectors, and ỹ analogously contains the (j − R1)th rows of Nk, k = 1, . . . ,R3.
This yields (2.3) as the first-order condition for all row rotations together. Analogously,
the first-order condition for all column rotations together equals (2.4). For rotations of
slices we obtain the first-order condition (2.5).

We use the first-order conditions (2.3)–(2.5) in the proof of ourmain result in Section 4.
Note that the first-order conditions only imply restrictions on S,T,U and not on the
full matrices S̃, T̃, Ũ. Indeed, the additional columns in the latter matrices correspond to
rotations of rows, columns or slices outside the R1 × R2 × R3 subtensor.

Using results from algebraic geometry, the following lemma is obtained. Its proof is
found in the appendix. The notion of “almost all Z ∈ R

I×J×K satisfy property P” is used
in the sense that the Lebesgue measure is zero for the set of Z not satisfying P.
Lemma 2.2: For almost all Z ∈ R

I×J×K problem (2.2) has a unique minimizer X and a
finite number of stationary points Xi, i.e. with corresponding Si,Ti,Ui satisfying the first-
order conditions (2.3)–(2.5).

Proof: See Appendix 1.

3. Finding a best approximation from S2(I, J,K)

Here we discuss a parameterization of S2(I , J ,K) and derive first-order conditions for
problem (1.4) with R = 2. In the sequel we make use of two classifications of tensors in
R
2×2×2, both of which can be found in Appendix 4. One distinguishes interior, boundary

and exterior points of S2(2, 2, 2) and is due to [26]. The other is the classification of [14]
of R

2×2×2 into eight distinct orbits under nonsingular transformations. We start with
following lemma.
Lemma 3.1: For R ≤ min (I , J ,K) we have the following results.

(i) AnyY ∈ SR(I , J ,K) can be written asY = (S,T,U) ·H, with columnwise orthogonal
S ∈ R

I×R, T ∈ R
J×R, and U ∈ R

K×R, and H ∈ SR(R,R,R) having upper triangular
slices. Moreover, Y ∈ SR(I , J ,K) if and only if H ∈ SR(R,R,R).

(ii) SR(I , J ,K) ⊆ M(R,R,R)(I , J ,K).
(iii) For any Y = (S,T,U) · H, with columnwise orthogonal S ∈ R

I×2, T ∈ R
J×2, and

U ∈ R
K×2, andH ∈ R

2×2×2 having upper triangular slices, we haveY ∈ S2(I , J ,K).

Proof: The proof of (i) can be found in [28, Lemma 3.2] and uses [14, Theorem 5.2]. Since
(S,T,U) · H in (i) has multilinear rank at most (R,R,R), statement (ii) follows from (i).

The proof of (iii) is as follows. We have rank(Y) = rank(H) and Y ∈ S2(I , J ,K) if and
only if H ∈ S2(2, 2, 2). We use the classification of interior, boundary and exterior points
of S2(2, 2, 2) in Proposition D.1 in Appendix 4.
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Let H ∈ R
2×2×2 have upper triangular slices H1 and H2. If no linear combination

of the slices is nonsingular, then H is a boundary point of S2(2, 2, 2) and H ∈ S2(2, 2, 2)
follows.Next suppose that a linear combination (which is also upper triangular) of the slices
exists that is nonsingular. Without loss of generality we assume that H1 is nonsingular.
If H2H−1

1 has real eigenvalues, then H ∈ S2(2, 2, 2). This is true, since H2H−1
1 is upper

triangular. If H2H−1
1 has complex eigenvalues, then H /∈ S2(2, 2, 2). However, H2H−1

1 is
upper triangular and has real eigenvalues. This completes the proof of (iii).

From Lemma 3.1 we obtain that

S2(I , J ,K) = {Y ∈ R
I×J×K : Y = (S,T,U) · H , with STS = TTT = UTU = I2

and Hk upper triangular , k = 1, 2}. (3.1)

An analogous result is proven in [27], who set

[H1 | H2] =
[
h111 h121 0 h122
0 h221 0 h222

]
, (3.2)

which can always be obtained via an orthogonal transformation (I2, I2,U) · H with H
having upper triangular slices. It is shown in [27] that H in (3.2) has rank 3 if and only if
h222 = 0 (and h111 �= 0, h221 �= 0, h122 �= 0).

Next, we consider the problem of finding a best approximation of Z ∈ R
I×J×K from

S2(I , J ,K) using the parameterization (3.1). Analogous to finding a best rank-(R1,R2,R3)
approximation, problem (1.4) is equivalent tomaximizing the Frobenius normof the upper
triangular parts of the slices of the 2 × 2 × 2 tensor (ST ,TT ,UT) · Z over (S,T,U) and
settingH equal to the upper triangular parts of (ST ,TT ,UT) ·Z . This in turn is equivalent
tomaximizing the Frobenius normof the upper triangular parts of the slices of any 2×2×2
subtensor of (̃ST , T̃T , ŨT) · Z over orthogonal S̃ ∈ R

I×I , T̃ ∈ R
J×J and Ũ ∈ R

K×K , with
H equal to the upper triangular parts of the transformed subtensor, and (S,T,U) equal to
the corresponding columns of (̃S, T̃, Ũ). We work with this formulation of problem (1.4)
for R = 2, where we take the subtensor that has indices (i, j, k) with i = 1, 2, j = 1, 2 and
k = 1, 2.

The alternating least squares (ALS) algorithmderived in [41] is used in [27] to find a best
approximation from S2(I , J ,K) using (3.1) under the restriction (3.2). Alternatively, (3.1)
can be used without the restriction (3.2) and an algorithm iterating over Givens rotations
can be applied. We derive first-order conditions for the latter problem analogous to (2.3)–
(2.5) for a best rank-(R1,R2,R3) approximation. Again, let the slices of Z̃ = (̃ST , T̃T , ŨT) ·
Z be partitioned as

[
Gk Lk
Nk Mk

]
, where Gk ∈ R

2×2, Lk ∈ R
2×(J−2), Nk ∈ R

(I−2)×2 and

Mk ∈ R
(I−2)×(J−2), k = 1, . . . ,K . Hence, in an optimal solution the core tensor H has

slices equal to the upper triangular parts of Gk, k = 1, 2.
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We obtain first-order conditions analogous to (2.3)–(2.5), with (R1,R2,R3) = (2, 2, 2)
and slices G1 and G2 upper triangular. That is,[

g111 g121 g112 g122
0 g221 0 g222

]
[N1 N2]T = O, (3.3)⎡⎢⎢⎢⎣

g111 g121
0 g221

g112 g122
0 g222

⎤⎥⎥⎥⎦
T [

L1
L2

]
= O, (3.4)

⎡⎢⎢⎣
g111 g112
0 0

g121 g122
g221 g222

⎤⎥⎥⎦
T ⎡⎢⎢⎣

g113 · · · g11K
0 · · · 0

g123 · · · g12K
g223 · · · g22K

⎤⎥⎥⎦ = O. (3.5)

Additionally, using Lemma 2.1, we need to consider rotations of rows 1 and 2 and columns
1 and 2, since these too transfer mass to the upper triangular parts ofG1 andG2. For rows
1 and 2 we obtain the condition(

g211
g212

)T ( g111
g112

)
= 0. (3.6)

For columns 1 and 2 we obtain the condition(
g211
g212

)T ( g221
g222

)
= 0. (3.7)

We use the first-order conditions (3.3)–(3.7) in the proof of our main result in Section 4.
Note that the first-order conditions only imply restrictions on S,T,U (with G =
(ST ,TT ,UT) · Z) and not on the full matrices S̃, T̃, Ũ. Analogous to Lemma 2.2 we have
the following result.
Lemma 3.2: For almost all Z ∈ R

I×J×K problem (1.4) has a unique minimizer X and a
finite number of stationary points Xi, i.e. with corresponding Si,Ti,Ui satisfying the first-
order conditions (3.3)–(3.7).

Proof: See Appendix 1.

For later use, we state the following results.
Lemma 3.3: For almost all Z ∈ R

I×J×K with Z /∈ S2(I , J ,K) any local minimizer X of
problem (1.4) hasmrank(X ) = (2, 2, 2).

Proof: See Appendix 2.

Lemma 3.4: Let the setWR(I , J ,K)denote either SR(I , J ,K), SR(I , J ,K)orM(R,R,R)(I , J ,K),
and let X be a best approximation of Z /∈ WR(I , J ,K) from the set WR(I , J ,K). Then
rank(X ) ≥ R.

Proof: The proof for SR(I , J ,K) is easy: if rank(X ) < R, then a rank-1 term can be added to
X to obtain a better approximation ofZ [14, Lemma 8.2]. Since SR(I , J ,K) ⊆ SR(I , J ,K) ⊆
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M(R,R,R)(I , J ,K) (see Lemma 3.1), the same argument can be used for SR(I , J ,K) and
M(R,R,R)(I , J ,K).

4. Existence of a best rank-2 approximation

Here we relate existence of a best rank-2 approximation to the rank of local minima of the
best rank-(2,2,2) approximation problem. Since S2(I , J ,K) ⊆ M(2,2,2)(I , J ,K) (Lemma3.1),
it follows that if a best rank-(2,2,2) approximation has rank 2, then it is also a best rank-2
approximation. Our main result is a partial converse of this. Recall that a best rank-(2,2,2)
approximation has rank equal to the rank of its core tensor G ∈ R

2×2×2, which has rank 2
or 3 (Lemma 3.4, and the fact that the maximal rank equals 3; see Appendix 4). We prove
the following.
Theorem 4.1: Let Z ∈ R

I×J×K have rank larger than 2. Let X be a locally best approxi-
mation of Z from S2(I , J ,K), with rank(X ) = 2. The following statements hold.

(i) X is a stationary point of the best rank-(2, 2, 2) approximation problem for Z .
(ii) If X is an interior point of S2(I , J ,K), then it is a local minimizer in the best rank-

(2, 2, 2) approximation problem for Z .

Proof: First, we prove (i). We consider a locally best approximation X of Z from the
set S2(I , J ,K) parameterized as in (3.1). We write X = (S,T,U) · H with columnwise
orthogonal S ∈ R

I×2,T ∈ R
J×2, andU ∈ R

K×2, andH ∈ R
2×2×2 having upper triangular

slices. We assume that rank(X ) = rank(H) = 2 and consider all possibilities for H in
Proposition D.1.

Suppose first that sliceH1 is nonsingular (or, equivalently, that a linear combination of
the slices of H is nonsingular). Proposition D.1 implies that H2H−1

1 has real eigenvalues
and two linearly independent eigenvectors. Recall thatHk is equal to the upper triangular
part of Gk in the first-order conditions (3.3)–(3.7). We have

H2H−1
1 =

[
g−1
111 g112 g−1

221 (g122 − g−1
111 g121 g112)

0 g−1
221 g222

]
, (4.1)

where g111 �= 0 and g221 �= 0 since H1 is nonsingular. Let the eigenvalues of H2H−1
1 be

distinct. By (4.1) this is equivalent to the vectors (g111 g112) and (g221 g222) being linearly
independent. From (3.6)–(3.7) we then obtain g211 = g212 = 0. Hence,Gk = Hk are upper
triangular for k = 1, 2, and first-order conditions (3.3)–(3.5) are identical to first-order
conditions (2.3)–(2.5).

Suppose next thatH1 is nonsingular andH2H−1
1 has two identical real eigenvalues with

two linearly independent eigenvectors. From (4.1) it follows that the vectors (g111 g112)
and (g221 g222) are proportional and that g111 g122 = g121 g112. The latter implies that
the vectors (g111 g112) and (g121 g122) are also proportional. (The first-order conditions
(3.6)–(3.7) imply that the vector (g211 g212) is orthogonal to the three proportional vectors
mentioned.) It is now possible to rotate rows 1 and 2 or columns 1 and 2 such that

Gk =
[ ∗ 0

∗ ∗
]
, k = 1, 2. Swapping rows 1 and 2, followed by swapping columns 1 and 2,

then yields upper triangular Gk, k = 1, 2. Hence, we obtain a better approximation from
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S2(I , J ,K) unlessGk, k = 1, 2, were already upper triangular before the rotations. As above
we obtain Gk = Hk, k = 1, 2.

Finally, suppose that no linear combination of H1 and H2 exists that is nonsingular.
Since H1 and H2 are upper triangular, it follows that g111 = g112 = 0 or g221 = g222 = 0
or both. If g111 = g112 = 0, then a rotation of rows 1 and 2 can move nonzero mass to
the (1,1) entries unless g211 = g212 = 0. Likewise, if g221 = g222 = 0, then a rotation of
columns 1 and 2 canmove nonzeromass to the (2,2) entries unless g221 = g222 = 0. Hence,
in both casesGk = Hk are upper triangular for k = 1, 2. Hence, in all possible cases X is a
stationary point of the best rank-(2, 2, 2) approximation. This completes the proof of (i).

Next, we prove (ii). LocalminimizerX = (S,T,U)·H is an interior point of S2(I , J ,K) if
andonly ifH is an interior point of S2(2, 2, 2).Note thatmrank(X ) =mrank(H) = (2, 2, 2)
according to Proposition D.1. We use the fact that generic tensors in R

2×2×2 have rank
2 or 3, both on sets of positive Lebesgue measure (Appendix 4), to obtain that for Y
in a small neighbourhood of X in M(2,2,2)(I , J ,K) we have rank(Y) = 2. It follows that
‖Z −Y||2F ≥ ‖Z −X‖2F , which implies thatX is a local minimizer of the best rank-(2, 2, 2)
approximation problem. This completes the proof.

We have the following corollary to Theorem 4.1.
Corollary 4.2: For almost all Z ∈ R

I×J×K with rank(Z) > 2, if all locally best approx-
imations Xi of Z from M(2,2,2)(I , J ,K) satisfy rank(Xi) = 3, then Z does not have a best
rank-2 approximation.

Proof: Recall from Lemma 2.2 that there are finitely many locally best approximations Xi
of Z fromM(2,2,2)(I , J ,K). Theorem 4.1 (ii), together with the conditions of the corollary,
implies that Z has no best rank-2 approximation that is an interior point of S2(I , J ,K). It
remains to consider the possibility that a best rank-2 approximation X of Z is a boundary
point of S2(I , J ,K). From Lemma 3.4 it follows that rank(X ) = 2. From the classification
of tensors in R

2×2×2 into eight orbits (Appendix 4) it follows that X has multilinear rank
(1,2,2), (2,1,2) or (2,2,1). This possibility is excluded by Lemma 3.3.

We now have the following options for determining whether Z ∈ R
I×J×K has a best

rank-2 approximation or not, and to obtain a best rank-2 approximation when it exists.

(A) Compute the best approximation X = (S,T,U) · H from the set S2(I , J ,K) using
the parameterization (3.1) under the restriction (3.2), and the algorithm of [41].
As shown in [27] the solution has rank 3 if and only if h222 = 0 (and h111 �= 0,
h221 �= 0, h122 �= 0).

(B) Compute the best approximation X = (S,T,U) · H from the set S2(I , J ,K) using
the parameterization (3.1) by iterating over Givens rotations. The rank ofH follows
from the criteria in Proposition D.1.

(C) Compute all local minima X = (S,T,U) · G of the best rank-(2,2,2) approximation
problem. The rank of G for a best rank-(2,2,2) approximation determines whether
a best rank-2 approximation has been found, and all ranks of G may determine
whether it exists (Theorem 4.1).

For (A) we need to check whether h222 equals zero or not, and for (B) we need to
verify whether the eigenvalues of H2H−1

1 are identical or not. In practice, these criteria
can be verified numerically only by setting some tolerance. For large tensors the tolerance
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may need to be larger as well, and the stopping criterion of the algorithm to find a best
approximation from S2(I , J ,K) may need to be more strict. For (C) we need to verify
whether G2G−1

1 has real or complex eigenvalues (Proposition D.1), which is numerically
more reliable. Note, however, that (C) does not yield a conclusion regarding existence of a
best rank-2 approximation when local rank-(2,2,2) minima are encountered of both rank
2 and rank 3, but the best rank-(2,2,2) approximation has rank 3.

When using (C) we do not expect to encounter any locally best rank-(2,2,2) approx-
imations that are a boundary points of S2(I , J ,K) (i.e. with G2G−1

1 having identical real
eigenvalues, see Proposition D.1). This is formally proven in the lemma below.
Lemma 4.3: For almost all Z ∈ R

I×J×K with mrank(Z) > (2, 2, 2) any locally best
rank-(2, 2, 2) approximation X has mrank(X ) = (2, 2, 2) and is not a boundary point of
S2(I , J ,K).

Proof: See Appendix 3.

5. Simulations

We conduct a simulation study to compare the criteria (A) and (C) for existence of a best
rank-2 approximation for randomly sampled tensors. For (A) we use the ALS algorithm
of [41] as is also done in [27]. For (C) we use the ALS algorithm of [36] as described in
[35]. For both algorithms we use convergence criterion 10−9 for the relative decrease of
‖Z − Y‖2F . The entries of tensor Z are sampled independently from the standard normal
distribution. For each Z we run both algorithms 40 times: 39 times with random starting
values and one time with starting values computed from the SVDs of the three matrix
unfoldings of Z as suggested in [36]. Hence, for each Z and each algorithm we obtain
40 local minima. We determine the rank of these minima via checking whether h222 = 0
for (A) and checking the eigenvalues of G2G−1

1 for (C). All local minima for (A) satisfy
h111 �= 0, h221 �= 0 and h122 �= 0, which implies they have multilinear rank (2,2,2). Hence,
no counterexamples to Lemma 3.3 were found. All local minima for (C) have nonsingular
G1 and the eigenvalues of G2G−1

1 are distinct, which is in line with Lemma 4.3.
To illustrate the difference between small and large tensors, we consider two sizes of

tensors: 4×4×4 and 30×10×5. The latter sizewas also used in the simulation study in [27].
For each size we generate 1000 random tensors Z . The ALS algorithms of [41] and [36]
yield a monotonically decreasing sequence ‖Z −Y(n)‖2F . To check whether they terminate
in local minima (and not saddle points), we compute the eigenvalues of the Hessianmatrix
of second-order derivatives corresponding to the maximization of ‖(ST ,TT ,UT) ·Z‖2F (or
the upper triangular parts thereof for S2(I , J ,K)). Here, the variables of the problem are the
rotation angles of the Givens rotations parameterizing orthogonalQ1 ∈ R

I×I ,Q2 ∈ R
J×J ,

and Q3 ∈ R
K×K , and the objective function is taken as ‖(STQ1,TTQ2,UTQ3) · Z‖2F (or

the upper triangular parts thereof for S2(I , J ,K)). The Hessian is computed symbolically
and then evaluated at Q1 = II , Q2 = IJ , and Q3 = IK . The largest eigenvalue of the
Hessian should be close to zero for a local maximum. Note that the Hessian always has
zero eigenvalues, since rotations of rows 1 and 2, columns 1 and 2, and slices 1 and 2 do not
affect the objective function of finding a best rank-(2,2,2) approximation. For finding a best
approximation from S2(I , J ,K), (more complicated) combinations of these rotations canbe
found that do not affect the objective function. Since theHessian is computed symbolically,
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Table 1. Number of tensors Z with number of distinct local minima as indicated per column. The last
column contains the total number of distinct local minima found.

Number of distinct local minima

Problem 1 2 3 4 5 6 7 8 9 10–22 Total

S2(4, 4, 4) 301 419 213 55 10 2 0 0 0 0 2060
M(2,2,2)(4, 4, 4) 379 418 171 30 1 1 0 0 0 0 1859
S2(30, 10, 5) 0 9 36 66 91 121 138 145 118 276 8019
M(2,2,2)(30, 10, 5) 2 11 40 81 104 139 160 147 97 219 7567

Table 2. For each subset of tensors are given: the number of tensorsZ , number of rank-2 minima of the
best rank-(2,2,2) problem, number of shared such rank-2 minima, number of best such minima that are
shared, and minimal and maximal |h222| values for shared and best minima of the approximation from
S2(I, J, K). Top rows: 4 × 4 × 4 tensors. Bottom rows: 30 × 10 × 5 tensors.

# real # shared # shared |h222| in |h222| in
eig(G2G−1

1 ) # tensors min min best min shared min best min

All real 644 1167 1155 644 0.25–5.28 0.25–5.22
Mixed real 114 169 168 114 0.51–5.05 1.09–5.05
All complex 121 – – – – 0.00–0.16
Mixed complex 121 145 143 - 0.86–5.36 0.00–4.12
All real 209 1309 1178 208 0.05–10.36 0.59–10.30
Mixed real 542 3554 3101 542 0.29–10.42 0.64–10.04
All complex 1 – – – – 0.03
Mixed complex 248 1410 1159 – 0.28–10.33 0.00–9.47

which takes a lot of time, we compute the Hessian only for 100 random 4 × 4 × 4 tensors
and one run with random starting values per tensor of both ALS algorithms. The largest
eigenvalue of the Hessian for all 100 runs is 0.00033 for the algorithm of [41] and 0.00025
for the algorithm of [36]. Hence, we have found only local minima as solutions produced
by the algorithms in these runs.

Next, we report the number of distinct local minima found by each algorithm for the
same tensor Z (for all 1000 generated tensors). We consider two solutions X1 and X2 as
distinct when ‖X1−X2‖2F > ε for some small threshold ε > 0. For 4×4×4 tensors we take
ε = 0.001 and for 30 × 10 × 5 we take ε = 0.1. Table 1 displays the numbers of distinct
local minima found for both algorithms. For 4 × 4 × 4 tensors up to 6 local minima are
found, and for 30 × 10 × 5 tensors up to 22 local minima are found. These numbers do
not change much for slightly different thresholds ε.

Depending on the eigenvalues of G2G−1
1 for the local minima of the best rank-(2,2,2)

problem, we partition the 1000 tensors into four subsets: all local minima having real
eigenvalues (rank 2, referred to as ‘all real’), all local minima having complex eigenvalues
(rank 3, referred to as ‘all complex’), both real and complex eigenvalues occur but the best
minimum has real eigenvalues (‘mixed real’), and both real and complex eigenvalues occur
but the bestminimumhas complex eigenvalues (‘mixed complex’). In Table 2 we report for
each subset the number of rank-(2,2,2) minima with real eigenvalues that are also found
as minima in the approximation from S2(I , J ,K), and their associated values for |h222|.

For the 4 × 4 × 4 tensors all four subsets are nonempty and 99 percent of the rank-
(2,2,2) minima with real eigenvalues are also found as minima of the S2(4, 4, 4) problem.
Moreover, all best of such rank-(2,2,2) minima are also found as best minima in the
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Figure 1. Small values of h222 for the best approximation from S2(I, J, K) for all 1000 tensors. Left:
4 × 4 × 4 tensors. Right: 30 × 10 × 5 tensors.

S2(4, 4, 4) problem. The values of |h222| for the shared minima should be nonzero and
their minimal value is 0.25. For the ‘all real’ and ‘mixed real’ subsets both algorithms find
the same best approximation, which is in line with theory. For the ‘all complex’ subset
Corollary 4.2 implies that no best rank-2 approximation exists. The values of |h222| of the
bestminima in the S2(4, 4, 4) problem are indeed small, with amaximumof 0.16. However,
there is not much difference with the smallest value of 0.25 for the rank-2 minima. For
the ‘mixed complex’ subset a best rank-2 approximation may or may not exist and the
|h222| values of the best minima in the S2(4, 4, 4) problem range from nearly zero to 4.12.
To determine whether these minima have rank 2 or rank 3 a threshold with respect to
|h222| needs to be specified. In Figure 1 the small values of h222 for the best minimum from
S2(4, 4, 4) are plotted. As can be seen, determining a suitable threshold may be difficult.
Checking for real or complex eigenvalues of G2G−1

1 is numerically more reliable.
Next, we discuss the results for 30× 10× 5 tensors. In this case the ‘all complex’ subset

consists of one tensor only. Hence, the result of Corollary 4.2 does not add much to the
analysis of the simulation results. Of the rank-(2,2,2) minima with real eigenvalues more
than 86 percent are also found as minima of the S2(30, 10, 5) problem. Almost all best such
minima are also found as best minima in the S2(30, 10, 5) problem. However, one best
rank-(2,2,2) minima is better than the best found approximation from S2(30, 10, 5), and
there is also one best approximation from S2(30, 10, 5) that is better than the best rank-
(2,2,2) approximation. Apparently, for these Z more runs of the algorithms are needed.
The values of |h222| for the shared minima should be nonzero, but their minimal value
is 0.05. This is an outlier, however, with other values being at least 0.58 for the ‘all real’
subset. In Figure 1 it can be seen that for 30× 10× 5 tensors the small values of h222 show
more variation than for 4× 4× 4 tensors, which makes it harder to choose a threshold for
|h222|.

The simulation results clearly show the added value of computing local rank-(2,2,2)
minima to determine whether a best rank-2 approximation exists, and to obtain it when it
does. Determining the rank of the 2 × 2 × 2 core tensor G via observing real or complex
eigenvalues of (G2G−1

1 ) is numerically more reliable than deciding whether an obtained
value of h222 is zero or not. Note that both approaches require running the algorithm a
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large number of times, either to obtain all local minima, or tomake sure the best minimum
is obtained. However, the rank-(2,2,2) approach is inconclusive for tensors in the ‘mixed
complex’ subset, the size of which is 12 and 25 percent in our simulation study. Hence, for
these tensors the only option is to compute a best approximation from S2(I , J ,K) and use
either method (A) or (B) in Section 4.

6. Results for complex tensors

As in the real case, for complex tensors a best rank-R approximation may not exist for
R ≥ 2. The contrived examples in [9,14,17] for real tensors are also valid in the complex
case. However, whether nonexistence of a best rank-R approximation holds on a set of
positive volume is still an open problem.A related result by [42] concerns tensors that allow
a Schmidt-Eckart-Young (SEY) decomposition: a decomposition into a sum of rank-1
tensors with a best rank-R approximation given by the sumofR of these rank-1 tensors. For
matrices the SEY decomposition is given by the SVD [43]. The result of [42] is that the set
of complex order-N tensors that do not admit an SEY decomposition has positive volume
for N ≥ 3. Since the set of complex tensors that do not have a best rank-R approximation
is a subset of the set of complex tensors that do not admit an SEY decomposition, this does
not imply that the former set also has positive volume.

For Z ∈ C
I×J×2 the situation is better than in the real case. Namely, it is shown

in [44] that M(R,R,2)(I , J , 2) = SR(I , J , 2) for R ≤ min (I , J), and that M(R,J ,2)(I , J , 2) =
SR(I , J , 2) for J ≤ R ≤ I . Hence, in these cases computing the best rank-(R,R, 2) or rank-
(R, J , 2) approximation suffices to determine whether a best rank-R approximation exists,
and to obtain it when it does. Note that Lemma 2.2 also holds for complex tensors (see
Appendix 1).

For complex 2 × 2 × 2 tensors the generic rank is 2 and the maximal rank is 3 (see
Appendix 4). Since any rank-3 tensor in C

2×2×2 can be approximated arbitrarily well by
rank-2 tensors, it follows that C

2×2×2 = S2(2, 2, 2). For Y ∈ M(2,2,2)(I , J ,K) we have Y =
(S,T,U) · G, with G ∈ C

2×2×2. Hence, Y ∈ S2(I , J ,K). Since S2(I , J ,K) ⊆ M(2,2,2)(I , J ,K),
we obtain S2(I , J ,K) = M(2,2,2)(I , J ,K). We thus obtain the following result.
Lemma 6.1: Z ∈ C

I×J×K has a best (complex) rank-2 approximation if and only if it has
a best (complex) rank-(2,2,2) approximation of rank 2.

In algebraic geometry the set S2(I , J ,K) is also known as the second secant variety to
the Segre variety and the equality S2(I , J ,K) = M(2,2,2)(I , J ,K) is shown in [45], also for
arbitrary order N of the tensors. In [46] an algorithm is given to check whether a complex
order-N tensor has border rank 2, which makes it a boundary point of S2(I , J ,K). The
description above and in Appendix 4 for N = 3 is simpler, however. Note that our results
for real tensors do not follow immediately from thementioned results for complex tensors.

7. Discussion

In this paper we have proposed to compute locally best rank-(2,2,2) approximations for
real order-3 tensors to determine whether a best rank-2 approximation exists, and to
obtain it when it does. When a best rank-(2,2,2) approximation has rank 2, it is also a
best rank-2 approximation. For generic tensors, we proved that when all locally best rank-
(2,2,2) approximations have rank 3, then no best rank-2 approximation exists. Verifying
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the rank of locally best rank-(2,2,2) approximations boils down to checking whether a 2×2
matrix has real or complex eigenvalues, which is numerically more reliable than checking
whether a core entry is zero or not.[27] This was demonstrated clearly in our simulation
study. However, a drawback of our method is that it yields no conclusion regarding the
existence of a best rank-2 approximation when the best rank-(2,2,2) approximation has
rank 3, but also local minima of rank 2 are encountered. In that case one still has to
compute a best approximation from the closure of the rank-2 set and decide whether it
has rank 2 or 3. Although using both algorithms for the same tensor may help to choose
a suitable tolerance for |h222| by inspecting the values of h222 for local minima found by
both algorithms.

Onemaywonderwhether our approach can be extended to best rank-3 approximations.
Since S3(I , J ,K) ⊂ M(3,3,3)(I , J ,K) it is still true that if the best rank-(3,3,3) has rank 3, then
it is also a best rank-3 approximation.However, since real 3×3×3 tensors have generic rank
5 [47], we do not expect a best rank-(3,3,3) approximation to have rank 3 for almost all Z .
Indeed, we were unable to find a counterexample for randomly sampled tensors. To obtain
an analogue of Theorem 4.1 for S3(I , J ,K) andM(3,3,3)(I , J ,K), we need a parameterization
of S3(I , J ,K) analogous to (3.1). From Lemma 3.1 (i) we obtain that Y ∈ S3(I , J ,K) can
be written as (S,T,U) · H, with H ∈ R

3×3×3 having upper triangular slices. However, to
obtain rank(H) = 3 we also need H2H−1

1 and H3H−1
1 to have identical eigenvectors [28]

(assumingH1 is nonsingular). Computing a best approximation from S3(I , J ,K) does not
seem as simple as finding orthogonal S̃, T̃, Ũ that maximize the Frobenius norm of some
part of a subtensor of (̃ST , T̃T , ŨT )·Z . Thismakes the linkwith locally best approximations
fromM(3,3,3)(I , J ,K) more complicated than in the rank-2 case.

Note that we may not replace M(3,3,3)(I , J ,K) in the above by either M(3,2,2)(I , J ,K) or
M(3,3,2)(I , J ,K), since both these sets do not contain all rank-3 tensors whenmin (I , J ,K) ≥
3. Indeed, an example is the tensor Y = ∑3

r=1 (ar ◦ br ◦ cr) with linearly independent
ar , r = 1, 2, 3 and br , r = 1, 2, 3, and cr , r = 1, 2, 3, which has rank 3 and mrank (3,3,3).
If min (I , J ,K) = 2, then S3(I , J ,K) is equal to the GSD set and computing a best GSD
approximation yields a best rank-3 approximation when it exists [25,26].
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Appendix 1. Proofs of Lemmas 2.2 and 3.2
Lemmas 2.2 and 3.2 are special cases of results obtained in algebraic geometry. Next, we state
their proofs. The set M(R1,R2,R3)(I , J ,K) is defined by conditions on the ranks of the three matrix
unfoldings of an I × J × K tensor. A matrix has rank at most R when all minors of order R (i.e.
determinants of R × R submatrices) are zero. These are polynomial equations in the entries of the
matrix. Hence,M(R1,R2,R3)(I , J ,K) can be defined in terms of polynomial equations in the entries of
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an I × J × K tensor. It follows thatM(R1,R2,R3)(I , J ,K) is a variety. The set SR(I , J ,K) can be defined
as the closure of the image of a polynomial map [48] and, hence, it is a (irreducible) variety.

To show that almost all Z have a unique best approximation fromM(R1,R2,R3)(I , J ,K) and from
SR(I , J ,K), we apply [49, Theorem 3.7]. Requirements in [49] are that the set is closed and semi-
algebraic and the norm is semi-algebraic and differentiable. SinceM(R1,R2,R3)(I , J ,K) and SR(I , J ,K)

are closed, a variety is by definition semi-algebraic, and the Frobenius norm is semi-algebraic and
differentiable,[49] this completes the proof of statements (i) of Lemmas2.2 and 3.2.

Next, we prove that the number of stationary points is finite in the approximation problems from
M(R1,R2,R3)(I , J ,K) and S2(I , J ,K). We begin withM(R1,R2,R3)(I , J ,K). It is known that the set of I × J
matrices with rank exactly R is a manifold, i.e. in a neighbourhood of each point a homeomorphism
to Euclidian space of dimension n exists. Such points are called smooth points and, hence, amanifold
consists of only smooth points. Analogous to the matrix result, the set of I × J × K tensors with
multilinear rank exactly (R1,R2,R3) is also a manifold. After fixing orthonormal bases in the three
subspaces, each such tensor Y can be written uniquely as Y = (S,T,U) · G, with G an R1 ×R2 × R3
tensor. This provides the homeomorphism to Euclidian space. By a general result of [50] over the
complex field, for almost allZ the number of (complex) stationary points in the approximation from
M(R1,R2,R3)(I , J ,K) with multilinear rank exactly (R1,R2,R3) is finite, and the real stationary points
are a subset of the complex stationary points. It remains to consider stationary pointswithmultilinear
rank less than (R1,R2,R3). For each triplet (r1, r2, r3) < (R1,R2,R3) and set M(r1,r2,r3)(I , J ,K) we
again apply the result of [50] to obtain a finite number of stationary points with multilinear rank
exactly (r1, r2, r3). Note that the stationary points in the approximation fromM(r1,r2,r3)(I , J ,K) may
not be stationary points in the approximation fromM(R1,R2,R3)(I , J ,K), whereas the converse is true
for the stationary points that have multilinear rank at most (r1, r2, r3). Since the number of triplets
(r1, r2, r3) is finite and we obtain finitely many stationary points for each triplet, it follows that there
are finitely many stationary points in the approximation from M(R1,R2,R3)(I , J ,K). This completes
the proof of Lemma 2.2.

For Lemma 3.2 we need to consider the smooth points of S2(I , J ,K). The tensors in S2(I , J ,K) are
either of the form a1 ◦b1 ◦ c1 + a2 ◦b2 ◦ c2 or of the form a1 ◦b1 ◦ c2 + a1 ◦b2 ◦ c1 + a2 ◦b1 ◦ c1 [14].
The first type are smooth points only when each pair of ai , bi and ci has rank 2. That is, when the
tensor has multilinear rank (2,2,2). The second type have rank 3 if and only if each pair of ai , bi and
ci has rank 2 [14]. However, the vectors ai , bi and ci are not unique [30, Lemma 4.1]. Hence, these
are singular points in S2(I , J ,K). It is well known that the singular points Sing(V) of an irreducible
variety V form a strict subvariety of V that is the union of finite irreducible varieties V1, . . . ,Vm. By
the result of [50] the number of stationary points in the approximation fromV\ Sing(V) is finite for
almost allZ . Next, we consider the approximation fromVj and obtain that the number of stationary
points in Vj\ Sing(Vj) is finite by [50], for j = 1, . . . ,m, and almost all Z . We can continue this
process and consider the approximation from Sing(Vj), and so forth. Note that a stationary point
in the approximation from Vj may not be a stationary point in the approximation from V . Since
S2(I , J ,K) is an irreducible variety, we obtain that for almost all Z the number of stationary points
in the approximation from S2(I , J ,K) is finite.

Appendix 2. Proof of Lemma 3.3
For columnwise orthogonal S ∈ R

I×2, T ∈ R
J×2, and U ∈ R

K×2, and G ∈ R
2×2×2, let X =

(S,T,U) · G be a local minimum in the approximation of Z ∈ R
I×J×K from S2(I , J ,K), with

Z /∈ S2(I , J ,K). Then rank(X ) ≥ 2 is easy to show using the proof of Lemma 3.4. From the orbits of
R
2×2×2 in Appendix 4 it follows that mrank(X ) = mrank(G) equals either (1,2,2), (2,1,2), (2,2,1),

or (2,2,2). Below, we prove that mrank(X ) = (2, 2, 1) does not occur for almost all Z . The proofs
for (1,2,2) and (2,1,2) are analogous. We prove the following results.
Lemma B.1: Let Z ∈ R

I×J×K , with Z /∈ S2(I , J ,K) and mrank(Z) ≥ (2, 2, 2). Let X be a local
minimum in the approximation of Z from S2(I , J ,K) with mrank(X ) = (2, 2, 1). Then orthogonal
S̃ ∈ R

I×I , T̃ ∈ R
J×J , and Ũ ∈ R

K×K exist such that Z̃ = (̃ST , T̃T , ŨT ) · Z has I × J slices Z̃k, with

Z̃k =
[
O O
O Mk

]
for k = 2, . . . ,K, whereMk ∈ R

(I−2)×(J−2). Furthermore, (Z̃1)ij = 0 for i �= j.
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Lemma B.2: For almost all Z ∈ R
I×J×K with Z /∈ S2(I , J ,K), no orthogonal S̃ ∈ R

I×I , T̃ ∈ R
J×J ,

and Ũ ∈ R
K×K exist such that Z̃ = (̃ST , T̃T , ŨT ) · Z has the form in the statement of Lemma B.1.

We start by proving the following auxiliary result.
Lemma B.3: For Z ∈ R

I×J with rank(Z) ≥ R ≥ 1, let X be a locally best rank-R approximation.
Then X is a (globally) best rank-R approximation of Z.

Proof: The problem of finding a best rank-R approximation of Z is identical to finding a best rank-
(R,R, 1) approximationofZ as described in Section2.That is,we are looking for orthogonal S̃ ∈ R

I×I

and T̃ ∈ R
J×J such that Z̃ = S̃T Z T̃ =

[
G L
N M

]
, with G ∈ R

R×R, L ∈ R
R×(J−R), N ∈ R

(I−R)×R,

andM ∈ R
(I−R)×(J−R), has maximal ||G||2F . The corresponding best rank-R approximation is then

given by X = SGTT , where S and T consist of the first R columns of S̃ and T̃, respectively.
Let X = SGTT be a locally best rank-R approximation of Z. As in the proof of Lemma 3.4,

it can be seen that rank(X) = rank(G) = R. First-order conditions (2.3) and (2.4) imply that
N = O and L = O, respectively. Using the SVDs of G and M, we may assume without loss
of generality that G = diag(σ1(G), . . . , σR(G)), with σ1(G) ≥ . . . ≥ σR(G) > 0, and M =[
diag(σ1(M), . . . , σRz−R(M)) O

O O

]
, with σ1(M) ≥ . . . ≥ σRz−R(M) > 0, and Rz = rank(Z).

Hence, the singular values of Z are given by σ1(G), . . . , σR(G), σ1(M), . . . , σRz−R(M). By [43] we
need to show that σR(G) ≥ σ1(M). For Rz = R we have X = Z and we are done. In the following,
let Rz > R. Let ei,n ∈ R

n be the ith unit vector. For small t, consider the rank-Rmatrix

X(t) = S̃

[(R−1∑
r=1

σr(G) er,I eTr,J

)
+ σR(G) (eR,I + t eR+1,I) (eR,J + t eR+1,J )

T

]
T̃T . (B1)

We have

||Z − X(t)||2F =
Rz−R∑
r=2

σ 2
r (M) + (σ1(M) − t2 σR(G))2 + 2 t2 σ 2

R(G)

= ||Z − X||2F + t2 σR(G) (t2 σR(G) + 2 (σR(G) − σ1(M))) . (B2)

By local optimality of X we must have ||Z − X(t)||2F ≥ ||Z − X||2F for small enough t. Hence,
t2 σR(G) + 2 (σR(G) − σ1(M)) ≥ 0 for small enough t, which implies σR(G) ≥ σ1(M). This
completes the proof.

Proof of Lemma B.1: From the orbits of R
2×2×2 in Appendix 4 it follows that mrank(X ) =

(2, 2, 1) implies rank(X ) = 2. An orthogonal Ũ ∈ R
K×K exists such that X̂ = (II , IJ , ŨT ) · X has

I × J slices X̂k with rank(X̂1) = 2 and X̂k = O for k = 2, . . . ,K . Let Ẑ = (II , IJ , ŨT ) · Z have I × J
slices Ẑk , for k = 1, . . . ,K . Then X̂ is a local minimum in the approximation of Ẑ from S2(I , J ,K)

with mrank(X̂ ) = (2, 2, 1). We have ||Ẑ − X̂ ||2F = ||̂Z1 − X̂1||2F +∑K
k=2 ||̂Zk||2F . Local optimality

of X̂ implies that X̂1 is a locally best rank-2 approximation of Ẑ1. Indeed, otherwise a locally better
approximation from S2(I , J ,K) can be found by varying X̂1 in its neighbourhood of rank-2matrices.
Let the SVD of Ẑ1 be given by Ẑ1 = S̃ diag(σ1(Ẑ1), σ2(Ẑ1), . . . , σmin (I ,J)(Ẑ1)) T̃T , where the singular
values σi(Ẑ1) are in descending order, and S̃ ∈ R

I×I and T̃ ∈ R
J×J are orthogonal. It follows from

Lemma B.3 and [43] that X̂1 is of the form X̂1 = S̃ diag(σ1(Ẑ1), σ2(Ẑ1), 0, . . . , 0) T̃T . Note that equal
nonzero singular values imply nonuniqueness of the corresponding left- and right singular vectors
in S̃ and T̃. However, since this nonuniqueness is present in both the SVD of Ẑ1 and the SVD of
a best rank-2 approximation X̂1 when one or both of σ1(Ẑ1) and σ2(Ẑ1) have multiplicity greater
than one, it remains true that X̂1 can be written in the form above. Now define Z̃ = (̃ST , T̃T , IK ) · Ẑ
and X̃ = (̃ST , T̃T , IK ) · X̂ . This proves the form of Z̃1 = S̃T Ẑ1 T̃, and X̃ is a local minimum in the
approximation of Z̃ from S2(I , J ,K).

Let ei,n ∈ R
n be the ith unit vector, and set g111 = σ1(Ẑ1) and g221 = σ2(Ẑ1) for ease of

presentation. Then X̃1 = g111 e1,I eT1,J + g221 e2,I eT2,J . Also, we have X̃k = O for k = 2, . . . ,K . To
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prove the form of Z̃k , k = 2, . . . ,K , we consider small perturbations of X̃ in S2(I , J ,K) and use the
local optimality of X̃ . Let k ∈ {2, . . . ,K} be fixed. For parameters s, t ∈ R, the perturbation of X̃1 is
given by

X̃1(s, t) = g111 (e1,I + s h1,1) (e1,J + t h1,2)T + g221 (e2,I + s h2,1) (e2,J + t h2,2)T , (B3)

with hi,1 ∈ span(e3,I , . . . , eI ,I) and hi,2 ∈ span(e3,J , . . . , eJ ,J ), for i = 1, 2. For parameter u ∈ R, the
perturbation of X̃k is given by X̃k(s, t, u) = u a(s) b(t)T , with a(s) ∈ span(e1,I + s h1,1, e2,I + s h2,1)
and b(t) ∈ span(e1,J + t h1,2, e2,J + t h2,2). We do not perturb X̃m = O for m �= k and m ≥ 2. We
claim that the perturbation X̃ (s, t, u) lies in S2(I , J ,K) for small s, t, u. It suffices to show that the
I × J × 2 tensor with slices X̃1(s, t) and X̃k(s, t, u) lies in S2(I , J , 2). In R

I , RJ , and R
2 we choose the

following bases: e1,I + s h1,1, e2,I + s h2,1, e3,I , . . . , eI ,I in R
I , e1,J + t h1,2, e2,J + t h2,2, e3,J , . . . , eJ ,J

in R
J , and e1,2, e2,2 in R

2. With respect to these bases, the I × J × 2 tensor has representation with
I × J slices [

diag(g111, g221) O
O O

]
,

[
u a(s) b(t)T O

O O

]
. (B4)

Hence, we need to show that the 2 × 2 × 2 tensor with slices equal to the nonzero parts in (B4) lies
in S2(2, 2, 2). But this follows from Proposition D.1 since slice 2 multiplied by the inverse of slice 1
cannot have complex eigenvalues.

Next, we use the perturbation X̃ (s, t, u) and local optimality of X̃ to prove the form of Z̃k . We
have by the triangle inequality that

||Z̃ − X̃ (s, t, u)||2F = ||̃Z1 − X̃1(s, t)||2F +
∑

m�=k,m≥2

||̃Zm − X̃m||2F + ||̃Zk − X̃k(s, t, u)||2F

≤
∑
m�=k

||̃Zm − X̃m||2F + ||X̃1 − X̃1(s, t)||2F + ||̃Zk − X̃k(s, t, u)||2F . (B5)

For small enough s, t, u, local optimality of X̃ thus implies ||X̃1− X̃1(s, t)||2F +||̃Zk − X̃k(s, t, u)||2F ≥
||̃Zk − X̃k||2F = ||̃Zk||2F .

Let Z̃k =
[
Gk Lk
Nk Mk

]
, withGk ∈ R

2×2, Lk ∈ R
2×(J−2),Nk ∈ R

(I−2)×2, andMk ∈ R
(I−2)×(J−2).

To prove Lemma B.1, we need to show that Gk = O, Lk = O, and Nk = O. Set s = t = 0. Then
choosing a(0)b(0)T = ei,I , eTj,J for i, j ∈ {1, 2} implies ||̃Zk−X̃k(0, 0, u)||2F < ||̃Zk||2F for small enough

u when (Gk)ij �= 0. Hence, we obtain Gk = O. We write a(s) =
(

a1
s a2

)
and b(t) =

(
b1
t b2

)
,

with a1, b1 ∈ span(e1,2, e2,2), a2 ∈ span(e1,I−2, . . . , eI−2,I−2), and b2 ∈ span(e1,J−2, . . . , eJ−2,J−2). It
follows that

X̃k(s, t, u) = u a(s) b(t)T =
[

u a1 bT1 t u a1 bT2
s u a2 bT1 s t u a2 bT2

]
, (B6)

and ||̃Zk − X̃k(s, t, u)||2F can be written as

||u a1 bT1 ||2F + ||Lk − t u a1 bT2 ||2F + ||Nk − s u a2 bT1 ||2F + ||Mk − s t u a2 bT2 ||2F . (B7)

Let s = 0 and fix t, u �= 0. Then (B7) equals ||Lk||2F + ||Nk||2F + ||Mk||2F − 2 t u aT1 Lk b2 +
t2 u2 (aT1 a1) (bT2 b2)+u2 (aT1 a1) (bT1 b1).Wehave ||X̃1−X̃1(0, t)||2F = t2 (g2111 h

T
1,2h1,2+g2221 h

T
2,2h2,2).

Local optimality of X̃ implies that(
t
u

)2
(g2111 h

T
1,2h1,2 + g2221 h

T
2,2h2,2) − 2

(
t
u

)
aT1 Lk b2 + (aT1 a1) (bT1 b1)

+ t2 (aT1 a1) (bT2 b2) ≥ 0 , (B8)
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for t, u small enough. Hence, the first three terms of (B8) together should be nonnegative for t, u
small enough. Denote this second degree polynomial by c2 x2 − 2 c1 x + c0, where x = t/u can
have any value. We have c2 > 0 and c0 > 0 and the minimal value of the polynomial is c0 − c21/c2
at x = c1/c2. Hence, the polynomial is nonnegative when c0 ≥ c21/c2. For any a

T
1 Lk �= 0T we can

choose b2 such that c21 > c0 c2. Thus aT1 Lk = 0T for any a1 ∈ span(e1,2, e2,2). This is only possible
when Lk = O. Analogously, it can be proven that Nk = O. This shows that Z̃k is of the form[
O O
O Mk

]
. Since k ∈ {2, . . . ,K} is arbitrary, this completes the proof.

Note that the constructionof theperturbation X̃ (s, t, u) requiresmin (I , J) ≥ 3.Whenmin (I , J) =
2 Lemma B.1 states that Z̃k = O for k = 2, . . . ,K . This is proven as follows. When I = 2 and J ≥ 3
we set s = 0 and Nk and Mk do not exist, and Gk = O and Lk = O follow as above. When J = 2
and I ≥ 3 the result is obtained analogously by setting t = 0. When I = J = 2 we set s = t = 0 and
Z̃k = Gk = O follows as above. Note that the proof of the diagonal form of Z̃1 is still valid when
min (I , J) = 2. �
Proof of Lemma B.2: Let S̃ ∈ R

I×I , T̃ ∈ R
J×J , and Ũ ∈ R

K×K be orthogonal such that Z̃ =
(̃ST , T̃T , ŨT ) ·Z has the form in the statement of Lemma B.1. Whenmin (I , J) = 2 we have Z̃k = O
for k = 2, . . . ,K and, hence, the mode-3 rank of Z̃ equals 1. Since this is equal to the mode-3 rank
of Z , it does not occur for almost all Z . In the following, let min (I , J) ≥ 3.

Let ŨT =
[
ũ11 ũT21
ũ12 Ũ22

]
, with ũ12, ũ21 ∈ R

K−1, and Ũ22 ∈ R
(K−1)×(K−1). We have

[̃Z2 . . . Z̃K ] = S̃T [Z1 . . . ZK ] ([ũ12 Ũ22]T ⊗ T̃) , (B9)

where ⊗ denotes the Kronecker product. By assumption, the matrix on the left-hand side of (B9)
has allzero rows 1 and 2 and, hence, rank at most I − 2. Let L be the inverse of a nonsingular
(K − 1) × (K − 1) submatrix of [ũ12 Ũ22]T , which has rank K − 1. Then

S̃ [̃Z2 . . . Z̃K ] (L ⊗ T̃T ) = [Z1 . . . ZK ] (([β IK−1]�)T ⊗ IJ ) , (B10)

where� ∈ R
K×K is a permutationmatrix andβ ∈ R

K−1. Since the transformations arenonsingular,
the matrix in (B10) also has rank at most I − 2. Without loss of generality we set � = IK . Then
(B10) equals

[Z1 . . . ZK ] ([β IK−1]T ⊗ IJ ) = [Z2 + β1 Z1 . . . ZK + βK−1 Z1] . (B11)

Hence, for some [v w] with rank([v w]) = 2 we have [v w]T (Zk + βk−1 Z1) = O for k = 2, . . . ,K .
When I = J this implies that −βk−1 is a real eigenvalue of (ZT

1 )−1ZT
k with associated eigenvectors

v and w. However, for almost all Z , the matrix (ZT
1 )−1ZT

k has I = J distinct eigenvalues with one
associated eigenvector each. This completes the proof for I = J . For I < J the same arguments can
be used for the submatrices of Zk and Z1 consisting of the first I columns.

Since Z̃ = (̃ST , T̃T , ŨT ) ·Z has the form in the statement of Lemma B.1, thematrix [̃ZT
2 . . . Z̃T

K ]
also has allzero rows 1 and 2.Analogous to (B9)–(B10)we obtain that [ZT

1 . . . ZT
K ] (([α IK−1] �̂)T⊗

II) has rank at most J − 2 for some α ∈ R
K−1 and permutation matrix �̂ ∈ R

K×K . Analogous to
the above, this is not possible for almost all Z when J ≤ I . This completes the proof. �

Appendix 3. Proof of Lemma 4.3
For columnwise orthogonal S ∈ R

I×2, T ∈ R
J×2, and U ∈ R

K×2, and G ∈ R
2×2×2, let X =

(S,T,U) ·G be a locally best rank-(2,2,2) approximation ofZ ∈ R
I×J×K , with mrank(Z) > (2, 2, 2).

Then rank(X ) ≥ 2 is easy to show using the proof of Lemma 3.4. From the orbits of R
2×2×2 in

Appendix 4 it follows that mrank(X ) = mrank(G) equals either (1,2,2), (2,1,2), (2,2,1), or (2,2,2).
Lemma 3.3 implies that mrank(X ) < (2, 2, 2) does not occur for almost all Z . Indeed, mrank(X ) <
(2, 2, 2) and rank(X ) ≥ 2 imply rank(X ) = 2. In that case X is also a local minimum in the
best approximation from S2(I , J ,K) ⊂ M(2,2,2)(I , J ,K) and Lemma 3.3 applies. Hence, mrank(X ) =
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(2, 2, 2) and rank(X ) equals 2 or 3. Recall fromAppendix 1 that this implies thatX is a smooth point
of the varietyM(2,2,2)(I , J ,K). We need to show that for almost allZ the local minimizerX does not
lie on the boundary of S2(I , J ,K). The latter is a subvariety ofM(2,2,2)(I , J ,K) of codimension 1 (see
Appendix 4). Recall fromAppendix 1 that thenumberof smooth stationarypoints inM(2,2,2)(I , J ,K))

is finite.
Denote the tangent space of M(2,2,2)(I , J ,K) at X by TX ⊂ R

I×J×K . We have TX = {Y ∈
R
I×J×K : Y = X + X2, X2 ∈ W} for some subspace W ⊂ M(2,2,2)(I , J ,K)). Since X is a

smooth point, it follows that dim(TX ) = dim(W) = dim(M(2,2,2)(I , J ,K)). Since X is a smooth
stationary point, the gradient of ||Z −Y||2F restricted to TX is zero atX . GenericZ ∈ R

I×J×K with
(I , J ,K) > (2, 2, 2) for whichX is a stationary point are of the formZ = X +X3 for someX3 ∈ W⊥,
with W⊥ denoting the orthogonal complement of W in R

I×J×K . Hence, the variety of such Z has
dimension IJK − dim(W) = IJK − dim(M(2,2,2)(I , J ,K)). Since X is an isolated smooth stationary
point, it follows from the above that by varying Z in a neighbourhood in R

I×J×K we obtain a
neighbourhood of X inM(2,2,2)(I , J ,K) of dimension dim(M(2,2,2)(I , J ,K)). This contradicts that X
is a boundary point of S2(I , J ,K) for genericZ since then the neighbourhood ofX inM(2,2,2)(I , J ,K)

should have dimension (at most) dim(M(2,2,2)(I , J ,K)) − 1. This completes the proof.

Appendix 4. Classification of 2 × 2 × 2 tensors
In [14] it is shown that all tensors in R

2×2×2 can be transformed to eight canonical forms, i.e.
for each Y ∈ R

2×2×2 nonsingular S ∈ R
2×2, T ∈ R

2×2, and U ∈ R
2×2 exist such that (S,T,U) · Y

equals a canonical form. Moreover, each Y ∈ R
2×2×2 can be transformed to one canonical form

only. This implies a classification of R
2×2×2 into eight orbits, with rank and mrank fixed on each

orbit. In Table D1 the canonical forms are listed, together with values of rank, mrank and the
Lebesgue measure for each orbit.

As can be seen, a generic tensor in R
2×2×2 is either in orbit G2 or in orbit G3. Hence, rank

2 and rank 3 both occur on sets of positive measure. It is shown in [14] that Z ∈ R
2×2×2 with

rank(Z) = 3 does not have a best rank-2 approximation. It is stated in [14] that there are seven
orbits in C

2×2×2, where D0, D1, D2, D′
2, D

′′
2 and D3 have the same canonical form, rank, mrank and

Table D1. Orbits ofR2×2×2 proven by [14].

Orbit Canonical form Rank Mrank Measure

D0

[
0 0 0 0
0 0 0 0

]
0 (0,0,0) 0

D1

[
1 0 0 0
0 0 0 0

]
1 (1,1,1) 0

D2

[
1 0 0 0
0 1 0 0

]
2 (2,2,1) 0

D′
2

[
1 0 0 1
0 0 0 0

]
2 (2,1,2) 0

D′′
2

[
1 0 0 0
0 0 1 0

]
2 (1,2,2) 0

G2

[
1 0 0 0
0 0 0 1

]
2 (2,2,2) >0

D3

[
1 0 0 1
0 1 0 0

]
3 (2,2,2) 0

G3

[
1 0 0 −1
0 1 1 0

]
3 (2,2,2) >0
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measure as for R
2×2×2. The seventh orbit consists of rank-2, mrank-(2,2,2) tensors and is the only

orbit with positive measure in C
2×2×2. We state the following result of [26] for real tensors.

Proposition D.1: Let Y ∈ R
R×R×2.

(a) If there exists aU ∈ R
2×2 nonsingular such thatX = (IR, IR,U) ·Y has nonsingular sliceX1,

then
(a1) Y is an interior point of SR(R,R, 2) ifX2X−1

1 hasR distinct real eigenvalues, and rank(Y) =
R.

(a2) Y is a boundary point of SR(R,R, 2) if X2X−1
1 has R real eigenvalues but not all distinct,

with rank(Y) = R if and only if X2X−1
1 has R linearly independent eigenvectors.

(a3) Y is an exterior point of SR(R,R, 2) if X2X−1
1 has at least one pair of complex eigenvalues.

(b) If there does not exist a U ∈ R
2×2 nonsingular such that X = (IR, IR,U) · Y has nonsingular

slice X1, then Y is a boundary point of SR(R,R, 2).

In parallel with PropositionD.1 forR = 2 it can be shown that the boundary of S2(2, 2, 2) consists
of orbits D0, D1, D2, D′

2, D
′′
2 and D3. Orbit G2 forms the interior of S2(2, 2, 2), while orbit G3 is the

exterior. It follows that the boundary of S2(I , J ,K) is formed by X = (S,T,U) · G with columnwise
orthogonal S ∈ R

I×2, T ∈ R
J×2 andU ∈ R

K×2, and G ∈ R
2×2×2 in orbit D0, D1, D2, D′

2, D
′′
2 or D3.

Interior points of S2(I , J ,K) have corresponding G in orbit G2. Exterior points have corresponding
G in orbit G3.

The boundary of S2(2, 2, 2) is characterized by the hyperdeterminant being zero, where the latter
is a polynomial in the entries of the 2 × 2 × 2 tensor [14]. Orbits G2 and G3 have positive and
negative hyperdeterminant, respectively. It follows that the boundary of S2(2, 2, 2) has codimension
1 in R

2×2×2. This implies that the boundary of S2(I , J ,K) has codimension 1 inM(2,2,2)(I , J ,K) and
is a subvariety ofM(2,2,2)(I , J ,K).
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